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Abstract. In this article, we propose a model based on Best Response
Dynamics (BRD) to examine the behavior of a group of rational
agents when an external regulatory entity enforces control policies
that influence the agents’ dynamics. BRD is valuable for analyzing
economic and social phenomena, as it captures the tendency of agents
to seek to maximize their individual benefits—a common behavior in
these contexts. However, these models frequently converge to a Nash
equilibrium, which may not represent a socially optimal outcome. To
address this limitation, we suggest introducing an external regulatory
agent that employs reinforcement learning to enhance the convergence
time to Nash equilibria or, ideally, to guide the system toward socially
optimal solutions. We utilize an environment modeled after a Facility
Location Game (FLG) to train a reinforcement learning agent and assess
the impact of its policies on the FLG’s behavior. This methodology
presents a novel application of game theory and reinforcement learning
for regulating complex systems, with potential implications in economics,
social systems, robotics, and engineering. We present preliminary results
to support our findings.

Keywords: Reinforcement learning, multi-agent systems, game theory,
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1 Introduction

In today’s interconnected world, addressing economic, social, and environmental
challenges requires a deep understanding of complex systems. These systems
often consist of agents (such as individuals, organizations, or entities) that
interact and make decisions to optimize their individual benefits. Although such
self-interested behaviors frequently result in predictable outcomes, such as Nash
equilibria, they may also prevent the system from reaching a social optimum.
Even when collective benefit is maximized, an agent can unilaterally adjust its
strategy to increase personal gain, disrupting the system’s balance.

This paper presents work in progress; it focuses on the initial steps toward
addressing the challenge of dynamically regulating self-interested agents in

pp. 125-138; rec. 2025-03-14; acc. 2025-05-07 125 Research in Computing Science 154(7), 2025



Andrés Burjand Torres Reyes, Rolando Menchaca-Méndez, et al.

complex systems to reconcile individual incentives with collective welfare.
Specifically, we show preliminary results on improving convergence time to a
Nash Equilibrium in a Facility Location Game with players under Best Response
Dynamics behavior using a Reinforcement Learning framework.

Game theory provides powerful tools for analyzing agent interactions, with
Best Response Dynamics (BRD) being a prominent method for modeling rational
decision-making. BRD is a process in which agents use a local search method
to achieve outcomes that benefit them individually while driving the system, in
general, toward Nash equilibrium [6]. It is particularly effective in modeling
economic and social scenarios in which agents aim to maximize individual
benefits. This model studies the interaction of rational agents who make decisions
to maximize an objective function based on the system’s current state, a
formulation rooted in the domain of game theory of potential games [17].
However, it suffers from exponential convergence times and an inability to adapt
to external interventions or collaborative behaviors.

To overcome these challenges, this work introduces an external regulatory
agent equipped with reinforcement learning capabilities. This agent operates
independently of the economic agents and intervenes in the system’s dynamics
by applying incentives or taxes. Unlike traditional models, this regulatory agent
dynamically adapts its strategies to optimize regulatory policies, enabling more
effective interventions in diverse scenarios. Its primary objectives are as follows:

— Accelerating convergence to Nash Equilibria: Reinforcement learning
techniques reduce convergence times from exponential to polynomial,
making the process more efficient.

— Guiding the system toward a social optimum: Ensuring outcomes that
maximize collective welfare.

The effectiveness of this approach is evaluated using a Facility Location
Game, a canonical optimization problem with applications in economics and
operations research.

This research contributes an innovative framework for regulating complex
systems, bridging game theory and machine learning to address real-world
challenges in economic and social contexts.

2 Justification

Efficient regulation of decentralized systems is critical in domains such as
energy markets, traffic routing, and public resource allocation, where static,
one-size-fits-all policies struggle to address real-time dynamics’ inherent
volatility and complexity. In energy markets, for instance, the rise of distributed
renewable energy sources (e.g., solar panels, wind farms) and fluctuating
demand patterns necessitate adaptive pricing and grid-balancing mechanisms
to prevent blackouts or the curtailment of renewable generation. Static tariff
structures or fixed supply-demand models often fail to account for sudden
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weather changes, shifts in consumer behavior, or equipment failures, leading to
inefficiencies and instability [9].

Similarly, in traffic routing, rigid signal timings or preprogrammed navigation
systems cannot respond to real-time congestion caused by accidents, road
closures, or surges in ride-sharing demand. Adaptive traffic management systems,
powered by IoT sensors and machine learning, dynamically reroute vehicles and
adjust signal cycles to minimize delays and emissions [5].

Public resource allocation—such as distributing emergency aid during
disasters or optimizing vaccine delivery during pandemics—also demands
real-time adjustments to evolving needs, supply chain disruptions, or
demographic inequities. Static policies risk misallocating resources and
leaving vulnerable populations underserved, which is a significant concern in
fields like public health [2].

These challenges underscore the need for decentralized regulatory frameworks
that integrate real-time data, predictive analytics, and feedback loops to balance
efficiency, equity, and resilience in dynamic environments.

3 Theoretical Framework

3.1 Game Theory Foundations

As stated by [14], "Game Theory aims to model situations in which multiple
participants interact or affect each other’s outcomes". These situations are often
counsidered as strategic games, and, according to [7], involve:

— A set of players (the participants) N = 1,2,...,n,

— Strategy profiles A = Ay X Ay X ... X A, which are the combination of actions
chosen by all players in the game, where A; is the set of actions available to
player

— Utility (or payoff) functions u; : A — R

A Nash Equilibrium (NE) is a strategy profile z* satisfying:
xz* € BR(z"),

where BR denotes the best-response mapping. In other words, no player can
increase their payoff by unilaterally deviating from x*.

A social optimum is considered a situation that maximizes the total welfare of
all players in a game. Mathematically, it is defined as a situation that maximizes
a social welfare function, aggregating all players’ utilities. The social welfare
function W : A — R aggregates individual utilities. One of the most common
aggregation methods is the utilitarian social welfare, which sums the utilities of
all players:

W(a) = ui(a), (1)

i€EN
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where a = (a1, az,as, ...,a,) is an action profile. An action profile a* € A is
socially optimal if:

¥
a* € arg max W(a) = arg gleajl(iezlvui(a), (2)
A very important consideration is the fact that a social optimum is not
necessarily a Nash Equilibrium, since certain individual incentives could lead
players to deviate from such situations.
According to [13], potential game are the ones where a function @ : S — R
exists such that for every player i, any strategy profile s = (s;,s_;), and any
alternative strategy s}, the change in player ’s utility satisfies:

wi(s;, 5_i) — ui(si,8-;) = D(s}, s_;) — DP(s4,5_4), (3)

where u; denotes the utility function of player i.

3.2 Best Response Dynamics (BRD)

Best Response Dynamics (BRD) models rational decision-making in strategic
games by assuming agents iteratively update their strategies to maximize
individual utilities based on others’ actions. This process can be represented
as a directed graph where nodes correspond to action profiles, and edges denote
transitions via unilateral best-response deviations. At each step, a player switches
to a strategy that maximizes their payoff given the current actions of others,
driving the system toward equilibrium states. [12]

While BRD converges to Nash equilibria in potential games [17], traditional
models face critical limitations:

— They cannot incorporate external interventions,

— They fail to account for learning processes or collaborative behaviors among
agents,

— Many existing regulatory frameworks are static and unable to adapt to
dynamic systems.

3.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning technique where an agent
interacts with an environment and tries to obtain the policy that yields the
maximum possible reward from said environment, using trial and error as its
basis. Using the concept of delayed rewards, RL encapsulates that actions can
affect both present and future rewards, improving the decision-making process.
RL is also very useful in uncertain environments, because it is designed to
keep the focus on proposed objectives, using the Markov Decision Processes
to formalize the interaction between an agent, its actions, and its goals. One
of the core challenges of RL is strategically balancing exploration (when the
agent tries new actions in the hope of better results) and exploitation (when
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the agent uses actions that proved helpful in the past), a dilemma absent from
supervised and unsupervised learning algorithms. This holistic approach makes
RL particularly suitable for real-time decision-making tasks where uncertainty
and long-term planning are crucial. [16]

3.4 Facility Location Games

The Facility Location Game is an optimization problem where the goal is to
determine which facilities to open and how to assign customers cost-effectively.
Given a set of facilities F' and a set of customers U, each facility ¢ € F has
a fixed, non-negative opening cost f;. Additionally, serving a customer j € U
from a facility ¢ € F' incurs a non-negative service cost c;;, which depends on the
specific facility—customer pair. The objective is to minimize the total cost, which
consists of the sum of the opening costs of the selected facilities and the service
costs of assigning each customer to an open facility. This requires making two key
decisions: selecting the facilities to open and determining the optimal assignment
of customers to these facilities while ensuring every customer is served [8,11].

Facility Location Games, as potential games, share the property of
guaranteed convergence to a Nash equilibrium, although the upper bound
is considered exponential (i.e., O(n™)). Another important characteristic of
potential games is that they have a central function, called the potential
function, which is optimized by the actions of all the players [18].

4 Related Work

A state-of-the-art search reveals several articles that analyze and apply Best
Response Dynamics as a modeling technique. For example, [3] studied public
goods games played on networks with possibly non-reciprocal relationships
between players, where they explained how and why a Nash equilibrium is
not always achieved in games on directed networks (which implies unequal
relationships); this paper poses an interesting background since taking into
consideration the nature of the relation between the agents in the model can
improve its plausibility, and it could be interesting to study how the regulating
agent could help achieve a Nash equilibrium.

Some researchers have utilized evolutionary game theory to understand
spatial collective decision-making behaviors, such as [22]. In this case, they
developed incentive mechanisms (reward and punishment) to investigate
asynchronous BRD of anti-coordinating agents. This approach could be
fruitful compared to the one proposed for this thesis. It is also interesting to
point out the distinction between coordinating and anti-coordinating agent
actions—former when, if one strategy prevails, agents in the system will be
favored to follow it; latter when individuals take the opposite action if most
game partners make the same choice [19].

A recent study by [4] explores discrete opinion dynamics in social networks
with stubborn agents, where conformists adopt the most common opinions
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from their neighbors, but stubborn agents remain unaffected by others. This
research transforms the opinion dynamics into an n-strategy evolutionary game
model with best-response updating, shedding light on how information influences
strategy evolution. When agents have complete information about all their
neighbors’ opinions, the game becomes a potential game, guaranteeing the
existence of at least one pure-strategy Nash equilibrium (PNE) and ensuring
convergence to a PNE through asynchronous BRD. However, multiple PNEs
often arise, complicating predictions of the evolutionary outcome. An interesting
extension of this work is provided when information is limited, as agents can
observe their neighbors with a probability of less than one. In this case, the
game results in a unique stationary strategy distribution if stubborn agents
are present, and the corresponding PNE becomes globally stable under both
synchronous and asynchronous dynamics. This finding introduces the idea that
a combination of stubborn agents and limited information can function as
an equilibrium-selection mechanism, making the evolutionary outcome more
predictable. The authors use numerical simulations on various network types,
demonstrating how the distribution of stubborn agents and the available
information level can significantly influence the final evolutionary outcome,
showing how agents with different opinions converge to the PNE.

Reinforcement Learning is a well-respected machine learning paradigm
in the literature. It is common to find uses in control theory, for instance,
[10], where they used RL for heading control for unmanned sailboats using a
backstepping sliding mode approach; here they propose an RL-based controller
that enhances tracking performance and robustness against disturbances
by integrating adaptive compensation mechanisms. The simulations show it
outperforms existing methods, demonstrating RL’s effectiveness in improving
control strategies for uncertain and dynamic systems. There are a variety of
uses as well in financial applications, such as [21], where they present a novel
approach to equity portfolio optimization by integrating spectral analysis,
portfolio theory, and deep reinforcement learning. In [15], the researchers
show a predictive-based reinforcement learning (PRL) model to improve
credit assessment for manufacturers and importers; by integrating predictive
analytics and reinforcement learning, PRL enhances credit-scoring accuracy,
decision-making, and financial stability.

It is also possible to find multiple articles that use both game theory and
reinforcement learning to model complex problems. For instance, [1] explores
the intersection of these two fields to model cyber-physical human systems by
“proposing a computationally feasible approach to simultaneously model multiple
humans as decision-makers, instead of determining the decision dynamics of the
intelligent agent of interest and forcing the others to obey certain kinematic and
dynamic constraints imposed by the environment.” This multi-agent method
could have certain advantages over the use of a regulatory agent, but it is also
more complex; there is also an opportunity to find the intersection between
both ideas, because many social and political scenarios include groups of
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decision-makers capable of adaptation while having a regulatory agent with a
different nature.

A promising direction for advancing this field is integrating evolutionary
game theory with reinforcement learning, leveraging non-cooperative game
theory to address the dynamic and complex nature of the agents’ interactions.
The research developed by [20] proposes a hybrid framework where a
non-cooperative competition dynamically selects policy update modes using
Nash equilibrium, ensuring diversity in agent strategies, while a cooperative
collaboration balances exploration and convergence. The system can overcome
local optima and adapt more effectively to dynamic conditions by allowing
evolutionary algorithms to drive environment-independent exploration. This
approach highlights the potential of combining game-theoretic principles with
reinforcement learning. It suggests pathways for enhancing models of regulatory
and adaptive agents in socio-political and multi-agent systems, aligning well
with the challenges and opportunities identified for this work.

5 Proposed Solution and Methodology

5.1 Description of the Simulated Environment

This simulated environment will be a graph-based representation of a facility
location game. The base will consist of a weighted, undirected, connected tree
graph G = (V, D, E, W), where:

V (nodes):

e Each with an associated client demand.

e Potential facility locations F' C V.
— D (node weights): node weights represent the demand at each node, such
that Vd € D, d € N.
E (edges): connections between nodes (e.g., roads, transit links).
W (edge weights): edge weights represent serving costs (e.g., distance,
congestion, transportation fees), such that Yw € W, w € N.

The decision to use a tree was made to ensure convergence via BRD. There
are three main reasons: the potential is bounded (¢ > 0); each best response
reduces ¢ or leaves it unchanged if equilibrium is reached; and the absence of
cycles prevents infinite loops.

The group of players acting under Best Response Dynamics can be defined as
aset N = {playery, players, . .., player, }, where each player i chooses a location
fi € F to build its unique uncapacitated facility with no associated building cost,
and this location becomes exclusive to ¢ while ¢ decides to keep it. We also define
a distance function dg(z,y) giving the shortest-path distance between any two
vertices z,y € V and a profit function U;(f;, f—;) depending on the locations of
all players, defined in equation (4):

Ulfis f-)= >, D()-(1—dale ). (4)
ceV
fi=nearest(c)
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Since this FLG is considered under the potential games framework, we use a
global potential function ¢ that reflects system-wide efficiency:

o(f) = Z D(c) - dg (¢, nearest(f)). (5)

ceV

Here, ¢ represents the total weighted distance from all clients to their nearest
facility. Thus, players’ strategies directly impact ¢.

The best-response update for player ¢ at time step ¢ + 1 is described in
equation (6):

f.(H_l) =arg max U;(f, f(_t.). (6)
' fer\f©) '

where fitl) are the locations of the other players at time ¢t. When the distance
calculation between customers and facilities results in a tie, it is broken by
random assignment.
Given these definitions, the BRD process proceeds as follows:
1. Start with an initial random configuration (x§°>,x§°),...,x§?)) with no
overlap.
2. At each time step t, select a player at random to update their position to
their best response given the current positions of others.

3. Halt when no player can improve their utility (PNE).

Under this design, a Nash equilibrium arises when no player can unilaterally
move to capture more clients (i.e., Bf! : U;(f!, f—i) > Ui(fi, f—i))-

After success with this simple simulation, certain changes could improve the
model’s real-life applicability. For example, we could simulate a more dynamic
graph where road conditions change over time, include traffic congestion, model
evolving client demand with stochastic variations, etc.

5.2 Preliminary description of the proposed solution

As we discussed earlier, there are two main problems with agents that act
selfishly in any given game: the time complexity to achieve Nash Equilibrium
is usually exponential, and many states are not socially optimal since the
algorithms they follow usually lead to local optimums; this is the case as well for
BRD [4]. We decided to address both of these issues by implementing an agent
with a different nature, one that can alter certain game conditions by modifying
the rules, applying incentives, and learning how to obtain the optimal values for
the variables it can control using reinforcement learning. Fig 1 illustrates this
idea. Fig 1 represents the process through which the agent obtains information
of the environment given by the Facility Location Game with BRD to decide
how to act through regulations and incentives (with policy m), and also takes
rewards that help it improve its policy. Reinforcement learning depends on the
agent-environment framework since it pays attention to the current state of the
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Fig. 1. Proposed architecture.

situation and considers its space of action. The first step is creating a simulation
of the Facility Location Game, described in the previous section. Once the
simulation is operating, we can extract the set of states corresponding to the
environment. These states will be encoded to capture spatial relationships with
a set of variables such as the positions of facilities and clients, the distribution
of demand, the number of players, the players’ decisions, costs, etc, as well as
the potential function, which is the function to maximize.

This paper is centered on the objective of reducing convergence time. The
process of balancing both objectives, given that we proposed a Multi-Objective
Reinforcement Learning framework, is still being developed.

The regulatory agent (RA) will take actions a; from a predefined action space
A (a; € A = {tax on locations, incentives for players,...}) depending on the
state Sy; from this space, it will select a policy to pursue its two main objectives:

1. Accelerate convergence to NE, which we formally consider as the reduction
to polynomial time (O(n)).

2. Obtaining socially optimal situations, even if it means escaping
Nash Equilibria

This policy will be iteratively improved with the reward function assigned to
the environment, which will give the necessary incentives to the RA to achieve an
optimal policy, which is the policy that secures the best positions for the players,
and, therefore, the best rewards for the RA. A policy 7 can be defined as:

7: S — A
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Each state S; at time t consists of:

Graph structure G;: The adjacency matrix of the current network.

Facility locations (Both potential and taken) F}: A binary vector indicating
which nodes have facilities.

Demand distribution D;: A vector assigning demand values to client nodes.
— Cost matrix C: Transportation costs from each client to its assigned facility.

The final reward signal will most likely be based on arguments like: cost
minimization (e.g., transportation or setup costs), Stagnation (when there are
no changes in players’ positions or utilities), and/or convergence incentives
(e.g., penalizing large deviations from equilibrium solutions). A proposed reward
function R(S;) is:

R(Sy) = Apy — 1. (7)

Where I is the number of iterations, this way, the reward is proportional
to how much the general utility is improved and is reduced by the iterations it
takes to achieve NE.

The final implementation of the RA will make use of different variables to
achieve its goal, which will be its action space, like:

— Conveniently changing the player selection order (instead of it being random)
to prioritize players with higher potential to improve system efficiency.
Utility function weighting: Dynamically adjusting o and [ weights
corresponding to the sum_ demands and sum_ costs variables in the utility
function.

Altering the tie-breaking rules

— Facility activation/deactivation

It will use a model-free approach called Proximal Policy Optimization, which is
suitable for discrete action spaces.

In the Preliminary Results section, we implement a lightweight regulatory
agent based on a tabular reinforcement-learning scheme with an e-greedy Monte
Carlo policy as a proof of concept. At each time step, the agent "intervenes"
by selecting exactly one of the currently non-converged players—dynamically
prioritizing those whose move is estimated to yield the greatest improvement
in global efficiency. Concretely, the action space at state S; has size equal to
the number of active players n. To keep the state representation compact, we
discretize each player’s individual utility ugt) and the overall potential function
#® into a small number of bins (from “very low” to “very high”), which were
estimated using statistical data from the simulations run using only FLG +
BRD; the resulting tuple

st = (bin(ul?), ..., bin(u®), bin(p™)). (8)

serves as the index into a Q-table Q(s, a), which is initialized with a small positive
constant (107°) to encourage early exploration. At each decision point, with
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probability e the agent picks a random valid player (exploration), and otherwise
it exploits by choosing

a;r = arg max Q(s¢a). (9)
a€A(sy)
Immediately after the chosen player best-responds and the game state advances,
we compute a scalar reward

R(Sy) = ¢ — o= — T x puw, (10)

where I is the current iteration count (to penalize long trajectories) and pw
is a tunable penalty weight. During learning, we perform the incremental
Bellman update

Q(st,at) < Q(st,ar) + Q[R(St) + VHE}XQ(SHMGI) - Q(Staat)}v (11)

with learning rate @ = 0.1 and discount factor v = 0.99. Once the Facility
Location Game converges, a Monte Carlo end-of-episode pass backpropagates
the final reward through the entire episode history: computing the return G
backward and adjusting each visited Q-entry by

Q(st,at) < Q(st,at) + a(G—Q(st,at)). (12)

To balance exploration and exploitation over successive episodes, the exploration
rate is decayed multiplicatively:

e + 0.99%c¢. (13)

Preliminary experiments show that this simple regulatory intervention
significantly accelerates convergence of best-response dynamics, reducing both
the number of iterations and the variance of the potential-function trajectory.

6 Preliminary Results

In fig 2 we show how the previously defined simulation results look using
a specific seed (66). The simulation was implemented in Python, and
the source code (including the Facility Location Game environment, Best
Response Dynamics logic, and visualization tools) is publicly available on
GitHub under an open-source license. The repository can be accessed at:
https://github.com/Burjand /facility location game.git. These were the used
hyperparameters:

Number of nodes: 100

— Number of potential facilities: 80
Number of BRD players: 10
Seed: 66
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Fig. 2. FLG with BRD simulation results.

Running 1000 simulations with different seeds chosen randomly, 100 nodes,
80 potential facilities, and 10 players, the average number of iterations to achieve
Nash Equilibrium was 58.515, and the average potential function value at the
end was 60597.483. After implementing the regulatory agent with the conditions
stated before, we ran again 1000 simulations with different seeds chosen randomly
and the same parameters, and obtained that the average number of iterations to
achieve Nash Equilibrium was 43.817, and the average potential function value
at the end was 50949.478.

7 Scientific Novelty

The majority of studies involving multi-agent modeling have two main
approaches regarding their adaptability to achieve objectives: The first is
that agents act selfishly and non-cooperatively, maximizing their own utility
function; the second is that each agent can learn, allowing them to adapt to
situations in a more "intelligent" manner. The novelty of this work lies in
a variation of the first modeling approach, introducing an agent capable of
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modifying the system’s rules so that agents can reach Nash Equilibria more
quickly despite lacking the adaptability provided by learning and cooperating
in the second approach.

8 Limitations and Future Work

Despite these promising benefits, the modeling technique has notable limitations.
One of the most significant is its inability to incorporate the agents’ capacity
for cooperative behavior, long-term adaptation, and learning from past actions.
This limitation arises because the framework assumes purely rational and selfish
players. A potential area for future improvement —either in this work or in
subsequent studies— would be enhancing the model to simulate agents’ learning
abilities and collaborative behavior, which can turn this into a Multi-agent
Reinforcement Learning problem. Some other future works that could be
developed based on this one could be developing computational methods to
scale the model for larger, more complex systems and testing the framework in
real-world scenarios to validate its assumptions and refine its applicability.
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